Monday, 16 October 2017

Moving Average Floating Point


Moving Average Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no Google Estou tentando calcular a média móvel de um sinal. O valor do sinal (um duplo) é atualizado em tempos aleatórios. Eu estou procurando uma maneira eficiente de calcular a sua média ponderada de tempo durante uma janela de tempo, em tempo real. Eu poderia fazer isso sozinho, mas é mais desafiador do que eu pensava. A maioria dos recursos que eu encontrei na internet estão calculando a média móvel do sinal periódico, mas as atualizações de minas em tempo aleatório. Alguém sabe bons recursos para o que o truque é o seguinte: Você recebe atualizações em tempos aleatórios através de void update (tempo int, valor float). No entanto, você também precisa acompanhar quando uma atualização cai fora da janela de tempo, então você define um alarme que chamado no tempo N que remove a atualização anterior de ser sempre considerado novamente na computação. Se isso acontecer em tempo real, você pode solicitar que o sistema operacional faça uma chamada para um método void dropoffoldestupdate (int time) para ser chamado no momento N Se esta é uma simulação, você não pode obter ajuda do sistema operacional e você precisa Faça-o manualmente. Em uma simulação você chamaria métodos com o tempo fornecido como um argumento (que não se correlaciona com o tempo real). No entanto, uma suposição razoável é que as chamadas são garantidas de tal forma que os argumentos de tempo estão aumentando. Neste caso, você precisa manter uma lista ordenada de valores de tempo de alarme e, para cada chamada de atualização e leitura, verifique se o argumento de tempo é maior que o cabeçalho da lista de alarmes. Embora seja maior você faz o processamento relacionado com o alarme (deixe cair a atualização mais antiga), remova a cabeça e verifique novamente até que todos os alarmes antes do tempo determinado sejam processados. Em seguida, faça a chamada de atualização. Até agora tenho assumido que é óbvio o que você faria para a computação real, mas vou elaborar apenas no caso. Eu suponho que você tem um método float read (tempo int) que você usa para ler os valores. O objetivo é tornar essa chamada o mais eficiente possível. Portanto, você não calcula a média móvel sempre que o método de leitura é chamado. Em vez disso, você precompute o valor a partir da última atualização ou o último alarme e ajustar esse valor por um par de operações ponto flutuante para conta para a passagem do tempo desde a última atualização. (Isto é, um número constante de operações excepto para talvez processar uma lista de alarmes acumulados). Esperemos que isso seja claro - este deve ser um algoritmo bastante simples e bastante eficiente. Otimização adicional. Um dos problemas restantes é se um grande número de atualizações acontecer dentro da janela de tempo, então há um longo tempo para que não há nem lê nem atualizações e, em seguida, uma leitura ou atualização vem junto. Neste caso, o algoritmo acima será ineficaz na atualização incremental do valor para cada uma das atualizações que está caindo. Isso não é necessário, porque nós só nos preocupamos com a última atualização além da janela de tempo, então se houver uma maneira eficiente de deixar todas as atualizações antigas, isso ajudaria. Para fazer isso, podemos modificar o algoritmo para fazer uma busca binária de atualizações para encontrar a atualização mais recente antes da janela de tempo. Se houver relativamente poucas atualizações que precisam ser descartadas, então um pode atualizar incrementalmente o valor para cada atualização descartada. Mas se houver muitas atualizações que precisam ser descartadas, então um pode recalcular o valor do zero após deixar as atualizações antigas. Apêndice sobre Computação Incremental: Eu deveria esclarecer o que eu quero dizer por computação incremental acima na sentença tweak este valor por um par de operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. Cálculo inicial não incremental: então iterar sobre as atualizações relevantes por ordem crescente de tempo: movimentação (sum lastupdate timesincelastupdate) / windowlength. Agora, se exatamente uma atualização cair da janela, mas nenhuma nova atualização chegar, ajuste a soma como: (note que é priorupdate que tem seu timestamp modificado para iniciar o último início da janela). E se exatamente uma atualização entra na janela, mas nenhuma nova atualização cai, ajuste a soma como: Como deve ser óbvio, este é um esboço grosseiro, mas espero que ele mostra como você pode manter a média tal que é O (1) operações por atualização Sobre uma base amortizada. Mas observe otimização adicional no parágrafo anterior. Observe também as questões de estabilidade mencionadas em uma resposta mais antiga, o que significa que os erros de ponto flutuante podem se acumular em um grande número dessas operações incrementais, de modo que há uma divergência em relação ao resultado da computação completa que é significativa para a aplicação. Se uma aproximação é OK e há um tempo mínimo entre as amostras, você pode tentar super-amostragem. Tenha uma matriz que represente intervalos de tempo uniformemente espaçados que sejam mais curtos que o mínimo, e em cada período de tempo armazene a amostra mais recente que foi recebida. Quanto menor o intervalo, mais próxima será a média do valor real. O período não deve ser maior que a metade do mínimo ou há uma chance de faltar uma amostra. Respondeu Dec 15 11 at 18:12 respondeu Dec 15 11 at 22:38 Obrigado pela resposta. Uma melhoria que seria necessário para realmente quotcachequot o valor da média total para que don39t loop o tempo todo. Além disso, pode ser um ponto menor, mas não seria mais eficiente usar um deque ou uma lista para armazenar o valor, uma vez que assumimos que a atualização virá na ordem correta. A inserção seria mais rápida do que no mapa. Ndash Arthur 16 dez às 8:55 Sim, você poderia armazenar em cache o valor de soma. Subtraia os valores das amostras que você apaga, adicione os valores das amostras inseridas. Além disso, sim, um dequeltpairltSample, Dategtgt pode ser mais eficiente. Eu escolhi o mapa para a legibilidade, ea facilidade de invocar map :: upperbound. Como sempre, escreva o código correto primeiro e, em seguida, perfile e mude as alterações incrementais. Ndash Rob Dec 16 11 at 15:00 Nota: Aparentemente esta não é a maneira de abordar isso. Deixando aqui para referência sobre o que está errado com esta abordagem. Verifique os comentários. UPDATED - com base no comentário Olis. Não tenho certeza sobre a instabilidade que ele está falando embora. Use um mapa ordenado de tempos de chegada contra valores. Na chegada de um valor adicione a hora de chegada ao mapa ordenado junto com seu valor e atualize a média móvel. Aviso este é pseudo-código: Lá. Não totalmente desenvolvido, mas você começa a idéia. Coisas a observar. Como eu disse o acima é pseudo código. Você precisará escolher um mapa apropriado. Não remova os pares à medida que você iterar através como você irá invalidar o iterador e terá que começar novamente. Veja Olis comentário abaixo também. Este trabalho não funciona: ele não leva em conta que proporção do comprimento da janela de cada valor existe para. Além disso, essa abordagem de adição e subtração é apenas estável para tipos inteiros, não para flutuadores. Ndash Oliver Charlesworth Dec 15 11 em 12:29 OliCharlesworth - desculpe eu perdi alguns pontos-chave na descrição (duplo e ponderada em tempo). Eu vou atualizar. Obrigado. Ndash Dennis Dec 15 11 at 12:33 A ponderação de tempo é ainda outro problema. Mas isso não é o que eu estou falando. Eu estava me referindo ao fato de que quando um novo valor entra pela primeira vez na janela de tempo, sua contribuição para a média é mínima. Sua contribuição continua a aumentar até que um novo valor entre. Ndash Oliver Charlesworth Dez 15 11 em 12: 35Moving Averages: What Are They Entre os mais populares indicadores técnicos, médias móveis são usados ​​para medir a direção da tendência atual. Cada tipo de média móvel (normalmente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinada, a média resultante é então plotada em um gráfico, a fim de permitir que os comerciantes olhar para os dados suavizados, em vez de se concentrar nas flutuações do preço do dia-a-dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando-se a média aritmética de um dado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e dividiria o resultado por 10. Na Figura 1, a soma dos preços dos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, em vez disso, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em consideração os últimos 10 pontos de dados, a fim de dar aos comerciantes uma idéia de como um ativo é fixado o preço em relação aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser eliminados do conjunto e novos pontos de dados devem entrar para substituí-los. Assim, o conjunto de dados está em constante movimento para contabilizar novos dados à medida que se torna disponível. Esse método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) move-se para a direita eo último valor de 15 é eliminado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a média da diminuição do conjunto de dados, o que faz, nesse caso de 11 para 10. O que as médias móveis parecem uma vez? MA foram calculados, eles são plotados em um gráfico e, em seguida, conectado para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos de comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você vai crescer acostumado com eles como o tempo passa. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e como ela se parece, bem introduzir um tipo diferente de média móvel e examinar como ele difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a essa crítica, os comerciantes começaram a dar mais peso aos dados recentes, o que desde então levou à invenção de vários tipos de novas médias, a mais popular das quais é a média móvel exponencial (EMA). Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Novas informações. Aprender a equação um pouco complicada para o cálculo de um EMA pode ser desnecessário para muitos comerciantes, uma vez que quase todos os pacotes gráficos fazer os cálculos para você. No entanto, para você geeks matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há valor disponível para usar como o EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Fornecemos uma planilha de exemplo que inclui exemplos reais de como calcular uma média móvel simples e uma média móvel exponencial. A diferença entre o EMA e SMA Agora que você tem uma melhor compreensão de como o SMA eo EMA são calculados, vamos dar uma olhada em como essas médias são diferentes. Ao olhar para o cálculo da EMA, você vai notar que mais ênfase é colocada sobre os pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente à variação dos preços. Observe como a EMA tem um valor maior quando o preço está subindo, e cai mais rápido do que o SMA quando o preço está em declínio. Esta responsividade é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que significam os diferentes dias As médias móveis são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que desejar ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será às mudanças de preços. Quanto mais tempo o intervalo de tempo, menos sensível ou mais suavizado, a média será. Não há um frame de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual funciona melhor para você é experimentar com uma série de diferentes períodos de tempo até encontrar um que se adapta à sua estratégia. Inscrever-se para notícias para usar para os últimos insights e análise Obrigado por se inscrever Investopedia Insights - Notícias para Use. I sei que isso é possível com o aumento de acordo com: Mas eu realmente gostaria de evitar usar o impulso. Eu tenho googled e não encontrei qualquer exemplos adequados ou legível. Basicamente, eu quero acompanhar a média móvel de um fluxo em andamento de um fluxo de números de ponto flutuante usando os mais recentes números de 1000 como uma amostra de dados. Qual é a maneira mais fácil de conseguir isso que eu experimentei com o uso de uma matriz circular, média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular adequado às minhas necessidades. Se suas necessidades são simples, você pode apenas tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador, e como seu código olha para cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1 e calcula isso: Você só precisa encontrar um valor de alfa onde o efeito de uma determinada amostra só dura cerca de 1000 amostras. Hmm, Im realmente não tenho certeza que isso é adequado para você, agora que Ive colocá-lo aqui. O problema é que 1000 é uma janela muito longa para uma média móvel exponencial Não tenho certeza se há um alfa que estenderia a média nos últimos 1000 números, sem subfluxo no cálculo do ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou assim, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 em 4:44 1 em seu borne. A média móvel exponencial pode permitir que o alfa seja variável. Portanto, isso permite que ele seja usado para calcular médias de base de tempo (por exemplo, bytes por segundo). Se o tempo desde a última actualização do acumulador for superior a 1 segundo, deixe alfa ser 1.0. Caso contrário, você pode deixar alfa ser (usecs desde a última atualização / 1000000). Ndash jxh Jun 12 12 at 6:21 Basicamente, eu quero acompanhar a média móvel de um fluxo em curso de um fluxo de números de ponto flutuante usando os mais recentes números de 1000 como uma amostra de dados. Observe que o abaixo atualiza o total como elementos como adicionado / substituído, evitando costal O (N) traversal para calcular a soma - necessária para a média - on demand. Total é feito um parâmetro diferente de T para suporte, e. Usando um longo longo quando totalizando 1000 s longos, um int para char s, ou um dobro ao total float s. Este é um pouco falho em que numsamples poderia ir passado INTMAX - se você se importa que você poderia usar um unsigned longo longo. Ou usar um membro de dados bool extra para gravar quando o recipiente é preenchido pela primeira vez enquanto ciclismo numsamples em torno da matriz (melhor então renomeado algo inócuo como pos). Respondida em 12 de junho de 12 às 5:19, assume-se que o operador quotvoid (amostra T) é, na verdade, operador quotvoid (T amostra) quot. Ndash oPless Jun 8 14 at 11:52 oPless ahhh. Bem manchado. Na verdade, eu quis dizer para ser void operador () (T amostra), mas é claro que você poderia usar qualquer nota que você gostava. Vai corrigir, obrigado. Ndash Tony D Jun 8 14 at 14: 27Como calcular médias móveis no Excel Análise de dados do Excel para Dummies, 2nd Edition O comando de análise de dados fornece uma ferramenta para calcular movimentação e médias exponencialmente suavizadas no Excel. Suponha, por uma questão de ilustração, que você tenha coletado informações diárias sobre temperatura. Você quer calcular a média móvel de três dias 8212 a média dos últimos três dias 8212 como parte de algumas previsões meteorológicas simples. Para calcular médias móveis para este conjunto de dados, execute as seguintes etapas. Para calcular uma média móvel, clique primeiro no botão de comando Dados da análise de dados tab8217s. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item Média móvel da lista e clique em OK. O Excel exibe a caixa de diálogo Média móvel. Identifique os dados que você deseja usar para calcular a média móvel. Clique na caixa de texto Intervalo de Entrada da caixa de diálogo Média Móvel. Em seguida, identifique o intervalo de entrada, digitando um endereço de intervalo de planilha ou usando o mouse para selecionar o intervalo de planilha. Sua referência de intervalo deve usar endereços de célula absolutos. Um endereço de célula absoluto precede a letra da coluna eo número da linha com sinais, como em A1: A10. Se a primeira célula do intervalo de entrada incluir uma etiqueta de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas na primeira linha. Na caixa de texto Intervalo, informe ao Excel quantos valores devem ser incluídos no cálculo da média móvel. Você pode calcular uma média móvel usando qualquer número de valores. Por padrão, o Excel usa os três valores mais recentes para calcular a média móvel. Para especificar que algum outro número de valores seja usado para calcular a média móvel, insira esse valor na caixa de texto Intervalo. Diga ao Excel onde colocar os dados da média móvel. Use a caixa de texto Range de saída para identificar o intervalo de planilha na qual você deseja inserir os dados de média móvel. No exemplo da folha de cálculo, os dados da média móvel foram colocados no intervalo B2: B10 da folha de cálculo. (Opcional) Especifique se você deseja um gráfico. Se você desejar um gráfico que traça as informações de média móvel, marque a caixa de seleção Saída do gráfico. (Opcional) Indique se deseja que as informações de erro padrão sejam calculadas. Se você deseja calcular erros padrão para os dados, marque a caixa de seleção Erros padrão. O Excel coloca valores de erro padrão ao lado dos valores da média móvel. (As informações de erro padrão passam para C2: C10.) Depois que você terminar de especificar quais informações de média móvel você deseja calcular e onde deseja colocá-las, clique em OK. O Excel calcula as informações da média móvel. Nota: Se o Excel não possui informações suficientes para calcular uma média móvel para um erro padrão, ele coloca a mensagem de erro na célula. É possível ver várias células que mostram esta mensagem de erro como um valor.

No comments:

Post a Comment