Thursday, 19 October 2017

Moving Average Order 2


Adicionar, alterar ou remover uma linha de tendência em um gráfico Aplica-se a: Excel 2010 Word 2010 Outlook 2010 PowerPoint 2010 Excel 2007 Word 2007 Outlook 2007 PowerPoint 2007 Mais. Menos Você pode adicionar uma linha de tendência ou média móvel a qualquer série de dados em um gráfico não-empilhado, 2-D, área, barra, coluna, linha, xy (dispersão) ou de bolha. Uma linha de tendência está sempre associada a uma série de dados, mas uma linha de tendência não representa os dados dessa série de dados. Em vez disso, uma linha de tendência é usada para descrever tendências em seus dados existentes ou previsões de dados futuros. Nota: Não é possível adicionar uma linha de tendência para as séries de dados em um gráfico empilhado, 3D, de torta, de superfície ou de rosca. O que você quer fazer Saiba mais sobre previsão e mostrando tendências em gráficos As linhas de tendência são usadas para exibir graficamente tendências em dados e para ajudar a analisar problemas de previsão. Essa análise também é denominada análise de regressão. Usando análise de regressão, você pode estender uma linha de tendência em um gráfico além dos dados reais para prever valores futuros. Por exemplo, o gráfico a seguir usa uma linha de tendência linear simples que prevê dois trimestres à frente para mostrar claramente uma tendência para aumentar a receita. Você também pode criar uma média móvel, o que suaviza as flutuações nos dados e mostra o padrão ou tendência mais claramente. Se você alterar um gráfico ou uma série de dados para que ele não possa mais suportar a linha de tendência associada, por exemplo, alterando o tipo de gráfico para um gráfico 3D ou alterando a exibição de um relatório de gráfico dinâmico ou relatório de tabela dinâmica associado a linha de tendência não aparece mais No gráfico. Para dados de linha sem um gráfico, você pode usar AutoFill ou uma das funções estatísticas, como CRESCIMENTO () ou TREND (), para criar dados para linhas lineares ou exponenciais de melhor ajuste. Quando você deseja adicionar uma linha de tendência a um gráfico no Microsoft Office Excel, você pode escolher qualquer um desses seis tipos diferentes de tendência ou regressão: linhas de tendência lineares, linhas de tendência logarítmicas, linhas de tendência polinomiais, linhas de tendência de energia, exponencial Linhas de tendência ou linhas de tendência médias em movimento. O tipo de dados que você tem determina o tipo de linha de tendência que você deve usar. Uma linha de tendência é mais precisa quando seu valor R-quadrado está em ou próximo de 1. Quando você ajusta uma linha de tendência para seus dados, o Excel calcula automaticamente seu valor R-quadrado. Se desejar, você pode exibir esse valor em seu gráfico. Linhas de tendência lineares Uma linha de tendência linear é uma linha reta com melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelha a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear ilustra que as vendas de geladeiras aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-quadrado é 0.979, que é um bom ajuste da linha para os dados. Linhas de tendência logarítmicas Uma linha de tendência logarítmica é uma linha curva melhor ajustada que é usada quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Linhas de tendência polinomiais Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, para analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial de ordem 2 geralmente tem apenas uma colina ou vale. Ordem 3 geralmente tem uma ou duas colinas ou vales. Ordem 4 geralmente tem até três colinas ou vales. O exemplo a seguir mostra uma linha de tendência polinomial Order 2 (uma colina) para ilustrar a relação entre a velocidade de condução eo consumo de combustível. Observe que o valor R-quadrado é 0.979, que é um bom ajuste da linha para os dados. Linhas de tendência de energia Uma linha de tendência de energia é uma linha curva que é usada com conjuntos de dados que comparam medidas que aumentam em uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados traçando a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.986, que é um ajuste quase perfeito da linha para os dados. Linhas de tendência exponenciais Uma linha de tendência exponencial é uma linha curva que é usada quando os valores de dados sobem ou caem em taxas constantemente crescentes. Não é possível criar uma linha de tendência exponencial se os dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Note que o valor R-quadrado é 0,990, o que significa que a linha se encaixa os dados quase perfeitamente. Movendo linhas de tendência médias Uma linha de tendência de média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência mais claramente. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha. Por exemplo, se Period for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. No exemplo a seguir, uma linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Adicionar uma linha de tendência Em um gráfico descompactado, 2-D, área, barra, coluna, linha, estoque, xy (dispersão) ou de bolha, clique na série de dados à qual você deseja adicionar uma linha de tendência ou média móvel ou faça o seguinte Para selecionar a série de dados de uma lista de elementos do gráfico: Clique em qualquer lugar no gráfico. Isso exibe as Ferramentas de gráfico. Adicionando o Design. Layout. E formatar separadores. No separador Formatar, no grupo Selecção actual, clique na seta junto à caixa Elementos do gráfico e, em seguida, clique no elemento do gráfico que pretende. Nota: Se você selecionar um gráfico que tenha mais de uma série de dados sem selecionar uma série de dados, o Excel exibirá a caixa de diálogo Adicionar linha de tendência. Na caixa de listagem, clique na série de dados que pretende e, em seguida, clique em OK. Na guia Layout, no grupo Análise, clique em Trendline. Siga um destes procedimentos: Clique em uma opção de linha de tendência predefinida que deseja usar. Nota: Isto aplica uma linha de tendência sem permitir que você selecione opções específicas. Clique em Mais opções de tendência. E, em seguida, na categoria Opções de tendência, em Trend / Regression Type. Clique no tipo de linha de tendência que você deseja usar. Médias de Moto: O que são Entre os indicadores técnicos mais populares, as médias móveis são usadas para medir a direção da tendência atual. Cada tipo de média móvel (normalmente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinada, a média resultante é então plotada em um gráfico, a fim de permitir que os comerciantes olhar para os dados suavizados, em vez de se concentrar nas flutuações do preço do dia-a-dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando-se a média aritmética de um dado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e dividiria o resultado por 10. Na Figura 1, a soma dos preços dos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, em vez disso, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em consideração os últimos 10 pontos de dados, a fim de dar aos comerciantes uma idéia de como um ativo é fixado o preço em relação aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser eliminados do conjunto e novos pontos de dados devem entrar para substituí-los. Assim, o conjunto de dados está em constante movimento para contabilizar novos dados à medida que se torna disponível. Esse método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) move-se para a direita eo último valor de 15 é eliminado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a média da diminuição do conjunto de dados, o que faz, nesse caso de 11 para 10. O que as médias móveis parecem uma vez MA foram calculados, eles são plotados em um gráfico e, em seguida, conectado para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos de comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você vai crescer acostumado com eles como o tempo passa. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e como ela se parece, bem introduzir um tipo diferente de média móvel e examinar como ele difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a essa crítica, os comerciantes começaram a dar mais peso aos dados recentes, o que desde então levou à invenção de vários tipos de novas médias, a mais popular das quais é a média móvel exponencial (EMA). Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Novas informações. Aprender a equação um pouco complicada para o cálculo de um EMA pode ser desnecessário para muitos comerciantes, uma vez que quase todos os pacotes gráficos fazer os cálculos para você. No entanto, para você geeks matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há valor disponível para usar como o EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Fornecemos uma planilha de exemplo que inclui exemplos reais de como calcular uma média móvel simples e uma média móvel exponencial. A diferença entre a EMA ea SMA Agora que você tem uma melhor compreensão de como a SMA ea EMA são calculadas, vamos dar uma olhada em como essas médias são diferentes. Ao olhar para o cálculo da EMA, você vai notar que mais ênfase é colocada sobre os pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente à variação dos preços. Observe como a EMA tem um valor maior quando o preço está subindo, e cai mais rápido do que o SMA quando o preço está em declínio. Esta responsividade é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que significam os diferentes dias As médias móveis são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que desejar ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será às mudanças de preços. Quanto mais tempo o intervalo de tempo, menos sensível ou mais suavizado, a média será. Não há um frame de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual funciona melhor para você é experimentar com uma série de diferentes períodos de tempo até encontrar um que se adapta à sua estratégia. Médias móveis: Como usar ThemChoosing a melhor linha de tendência para seus dados Quando você deseja adicionar uma linha de tendência para um gráfico no Microsoft Graph, você pode escolher qualquer um dos seis diferentes tipos de tendência / regressão. O tipo de dados que você tem determina o tipo de linha de tendência que você deve usar. Confiabilidade Trendline Uma linha de tendência é mais confiável quando seu valor R-quadrado está em ou próximo de 1. Quando você ajusta uma linha de tendência para seus dados, o Graph calcula automaticamente seu valor R-quadrado. Se desejar, você pode exibir esse valor em seu gráfico. Uma linha de tendência linear é uma linha reta com melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelha a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear mostra claramente que as vendas de geladeiras aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-quadrado é 0.9036, que é um bom ajuste da linha para os dados. Uma linha de tendência logarítmica é uma linha curva melhor ajustada que é mais útil quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e / ou positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.9407, que é um ajuste relativamente bom da linha para os dados. Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, para analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial de ordem 2 geralmente tem apenas uma colina ou vale. Ordem 3 geralmente tem uma ou duas colinas ou vales. Ordem 4 geralmente tem até três. O exemplo a seguir mostra uma linha de tendência polinomial Order 2 (uma colina) para ilustrar a relação entre velocidade e consumo de gasolina. Observe que o valor R-quadrado é 0.9474, que é um bom ajuste da linha para os dados. Uma linha de tendência de energia é uma linha curva que é melhor usada com conjuntos de dados que comparam medidas que aumentam a uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de um segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados traçando a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Note que o valor R-quadrado é 0.9923, que é um ajuste quase perfeito da linha para os dados. Uma linha de tendência exponencial é uma linha curva que é mais útil quando os valores de dados sobem ou caem a taxas cada vez mais altas. Não é possível criar uma linha de tendência exponencial se os dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-quadrado é 1, o que significa que a linha se encaixa perfeitamente os dados. Uma linha de tendência de média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência mais claramente. Uma linha de tendência de média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha de tendência. Se Período é definido como 2, por exemplo, então a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, e assim por diante. No exemplo a seguir, uma linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas.

No comments:

Post a Comment